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1 The Ideal Gas Law and Discretization

1.1 Recap

Last time, we set up a model with total energy Φn : I × Mn → [0,∞), where I is an
set specifying an extra parameter, such as the volume v of the enclosing system. Let
Sn(v, x) := log λn({ 1

nΦn(v, ·) ≈ x}), and we assume that 1
nSn(v, x) → s(v, x), where s is

concave in x, etc. We have the partition function Zn(v, β) =
∫
e−βΦn dλn, and we assume

that 1
n logZn(v, β) → s∗(v, β), where β > 0. These are related by using the Fenchel-

Legendre transform:
s(v, x) = inf

β>0
{s∗(v, β) + βx},

where the inf is achieved at β = ∂
∂xs(v, x).

In our piston chamber example, the “pressure” P associated to v was〈
∂Φn(v, ·)

∂v
, µn,β

〉
=

∂

∂v
[−T logZn(v, β)]︸ ︷︷ ︸

=F (v,β)

,

where F (v, β) is the Helmholtz free energy and T := 1/β is the thermodynamic
temperature.

≈ ∂

∂v
[−Tns∗(v, β)]

Here are the assumptions we have been making here:

• For most microscopic states, this quantity stays close to its average with respect to
to the microcanonical ensemble.

• We can replace the microcanonical ensemble by the canonical ensemble.

• We are assuming that we can interchange integration and differentiation in the above
calculation (this is fortunately not hard to justify using convexity arguments).
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1.2 The ideal gas law

Assume a gas of n (mass 1) non-interacting particles is in a region (cylinder C with cross-
sectional area 1 and length v).

The state is (r1, . . . , rn, p1, . . . , pn) ∈ (R3 × R3)n, and the potential energy is

ϕpot(r) =

{
0 r ∈ C
∞ r /∈ C.

The total energy is

Φn(r1, . . . , rn, p1, . . . , pn) =

{∑n
i=1

1
2 |pi|

2 ri ∈ C ∀i
∞ otherwise.

Our goal is to understand the pressure in terms of temperature and volume. We
understand this through

Zn(v, β) =

∫
· · ·
∫
e−βΦn dm×n3 (r1, , . . . , rn) dm×n3 (p1, . . . , pn)

=

∫
Cn

dr1 · · · drn ·
∫
· · ·
∫
e−β

∑n
i=1 |pi|2/2 dp1 · · · dpn

= vn ·
(∫

e−β|p|
2/2 dp

)n
= vn ·

((
2π

β

)3/2
)n

.

Then

Fn = T logZn = Tn log v − 3Tn

2
log(2πT ),

and so the pressure is

P =
∂Fn
∂v

=
Tn

v
.
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Thus, we get the Ideal Gas Law:1

PV = nT.

In Gay-Lussac’s version of this law, he derived a slightly more complicated-looking expres-
sion

PV = const · n · (const + θ),

where θ is the Celsius temperature and the constant next to it is ≈ 273.16o C.

1.3 Discretization in models with interaction

Suppose we have n particles in a region Rn ⊆ R3 with volume |Rn|. Then the position is
(r1, . . . , rn) ∈ Rnn, and

Φn(r1, . . . , rn) =
n∑
i=1

ϕpot(ri) +
∑
i 6=j

ϕint(ri − rj) +
n∑
i=1

1

2
|pi|2.

Here, the measure is λn = m×n3 ×m×n3 . The entropy

sn(x) = log λn({(r1, . . . , rn, p1, . . . , pn) : 1
nΦn ≈ x}).

We have a new kind of limit: The region should depend on n, so that |Rn|
n → some limit =

v. This little v is called the molar volume.
Note that

λn({(r1, . . . , rn) ∈ Rnn}) = |Rn|n ∼ (nv)n = nnvn.

This blows up with n. The solution is to not care about the ordering of the positions
of the particles (treating the particles as indistinguishable). Thus, we actually define
λn = 1

n!m
×n
3 ×m×n3 , and this quantity ∼ (v/e)n.

With this choice of λn now look at

Zn(β) =

∫
Rn

n

e−β
∑
ϕpot(ri)−β

∑
ϕint(ri−rj) dr1 · · · drn ·

∫
(R3)n

e−(β/2)(|p1|2+···+|pn|2) dp1 · · · dpn

=
1

n!

∫
Rn

n

e−potential terms dr1 · · · drn ·
(

2π

β

)3n/2

.

So we get

logZn(β) = log

(
1

n!

∫
Rn

n

(· · · ) dr1 · · · drn

)
+

3n

2
log

2π

β
.

1If you are using standard physical units, you need a constant in here to facilitate the conversion of
units.
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To “discretize” such a model, focus on the first term, ignore the second term, and then
discretize Rnn ⊆ (R3)n to (Rn∩εZ3)n ⊆ (εZ3)n. Then we replace m3 with counting measure
times ε3.

Next time, we will show how these considerations can allow us to derive the ideal gas
law again.
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