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1 The Ideal Gas Law and Discretization

1.1 Recap

Last time, we set up a model with total energy ®,, : I x M,, — [0,00), where I is an
set specifying an extra parameter, such as the volume v of the enclosing system. Let
Sn(v,2) = log A\y({£ @y (v, ") ~ z}), and we assume that 25, (v,z) — s(v,z), where s is
concave in z, etc. We have the partition function Z, (v, 8) = [ e B®n d),, and we assume
that %log Zn(v,B) — s*(v,B), where > 0. These are related by using the Fenchel-

Legendre transform:
s(v,2) = inf {s"(v, B) + Ba},
5>0

where the inf is achieved at = %s(v, x).
In our piston chamber example, the “pressure” P associated to v was

<W7ﬂnﬂ> = 881) [—Tlogfn(v,/é’)],
=F(v,3)
where F'(v,[) is the Helmholtz free energy and T := 1/ is the thermodynamic
temperature.

0
~ %[—Tns*(v, B)]

Here are the assumptions we have been making here:

e For most microscopic states, this quantity stays close to its average with respect to
to the microcanonical ensemble.

e We can replace the microcanonical ensemble by the canonical ensemble.

e We are assuming that we can interchange integration and differentiation in the above
calculation (this is fortunately not hard to justify using convexity arguments).



1.2 The ideal gas law

Assume a gas of n (mass 1) non-interacting particles is in a region (cylinder C' with cross-

sectional area 1 and length v).
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The state is (r1,...,7n, D1, ..., Pn) € (R? x R3)™, and the potential energy is
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The total energy is
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00 otherwise.
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Our goal is to understand the pressure in terms of temperature and volume.

understand this through

(v,B) = / / /B@"dmm (155 mn) dmz ™ (p1, - - - Pn)
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F, =TlogZ, =Tnlogv — Tn log(27T),

Then

and so the pressure is




Thus, we get the Ideal Gas Law:!
PV =nT.

In Gay-Lussac’s version of this law, he derived a slightly more complicated-looking expres-
sion
PV = const - n - (const + 6),

where 6 is the Celsius temperature and the constant next to it is ~ 273.16° C.

1.3 Discretization in models with interaction

Suppose we have n particles in a region R, C R3 with volume |R,|. Then the position is
(ri,...,m) € R, and

n n
1
Qp(ry,...,mn) = E Ypot (T7) + E Gint(rs — 75) + E §\Pi|2-
i=1 itj i=1

Here, the measure is A, = m3" x m3". The entropy

Sn(l') = log )\n({(rlv <oy Tny PLs - - - 7pn) : %(I)n ~ 33})

We have a new kind of limit: The region should depend on n, so that @ — some limit =
v. This little v is called the molar volume.
Note that

M({(r1,...,rn) € R1}) = |Rp|™ ~ (nv)"™ = n"0™.

This blows up with n. The solution is to not care about the ordering of the positions
of the particles (treating the particles as indistinguishable). Thus, we actually define
An = ZmS™ x mJ", and this quantity ~ (v/e)".

With this choice of A, now look at

Zn(B) = /Rn e B L eoot(r) =B @ine(ri=13) g ... g, - / e~ B/ (p1 P +-+lpnl®) gy L,

(R3)n
3n/2
_ l e—potential terms dT‘l ... dr, - Q—W /
So we get
1 Sn, 2
log Zn(8) = log <n, /RZ(--')dTl o d’“n) * glog%'

'Tf you are using standard physical units, you need a constant in here to facilitate the conversion of
units.



To “discretize” such a model, focus on the first term, ignore the second term, and then
discretize R C (R3)" to (R,NeZ3)"™ C (eZ*)". Then we replace m3 with counting measure
times 3.

Next time, we will show how these considerations can allow us to derive the ideal gas

law again.
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